Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sci Data ; 10(1): 367, 2023 06 07.
Article in English | MEDLINE | ID: covidwho-20232780

ABSTRACT

An impressive number of COVID-19 data catalogs exist. However, none are fully optimized for data science applications. Inconsistent naming and data conventions, uneven quality control, and lack of alignment between disease data and potential predictors pose barriers to robust modeling and analysis. To address this gap, we generated a unified dataset that integrates and implements quality checks of the data from numerous leading sources of COVID-19 epidemiological and environmental data. We use a globally consistent hierarchy of administrative units to facilitate analysis within and across countries. The dataset applies this unified hierarchy to align COVID-19 epidemiological data with a number of other data types relevant to understanding and predicting COVID-19 risk, including hydrometeorological data, air quality, information on COVID-19 control policies, vaccine data, and key demographic characteristics.


Subject(s)
COVID-19 , Humans , Air Pollution , COVID-19/epidemiology , Pandemics , Environment
2.
Geohealth ; 7(3): e2022GH000727, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2266011

ABSTRACT

Brazil has been severely affected by the COVID-19 pandemic. Temperature and humidity have been purported as drivers of SARS-CoV-2 transmission, but no consensus has been reached in the literature regarding the relative roles of meteorology, governmental policy, and mobility on transmission in Brazil. We compiled data on meteorology, governmental policy, and mobility in Brazil's 26 states and one federal district from June 2020 to August 2021. Associations between these variables and the time-varying reproductive number (R t ) of SARS-CoV-2 were examined using generalized additive models fit to data from the entire 15-month period and several shorter, 3-month periods. Accumulated local effects and variable importance metrics were calculated to analyze the relationship between input variables and R t . We found that transmission is strongly influenced by unmeasured sources of between-state heterogeneity and the near-recent trajectory of the pandemic. Increased temperature generally was associated with decreased transmission and increased specific humidity with increased transmission. However, the impacts of meteorology, policy, and mobility on R t varied in direction, magnitude, and significance across our study period. This time variance could explain inconsistencies in the published literature to date. While meteorology weakly modulates SARS-CoV-2 transmission, daily or seasonal weather variations alone will not stave off future surges in COVID-19 cases in Brazil. Investigating how the roles of environmental factors and disease control interventions may vary with time should be a deliberate consideration of future research on the drivers of SARS-CoV-2 transmission.

3.
EBioMedicine ; 89: 104482, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2257644

ABSTRACT

BACKGROUND: Since the US reported its first COVID-19 case on January 21, 2020, the science community has been applying various techniques to forecast incident cases and deaths. To date, providing an accurate and robust forecast at a high spatial resolution has proved challenging, even in the short term. METHOD: Here we present a novel multi-stage deep learning model to forecast the number of COVID-19 cases and deaths for each US state at a weekly level for a forecast horizon of 1-4 weeks. The model is heavily data driven, and relies on epidemiological, mobility, survey, climate, demographic, and SARS-CoV-2 variant frequencies data. We implement a rigorous and robust evaluation of our model-specifically we report on weekly performance over a one-year period based on multiple error metrics, and explicitly assess how our model performance varies over space, chronological time, and different outbreak phases. FINDINGS: The proposed model is shown to consistently outperform the CDC ensemble model for all evaluation metrics in multiple spatiotemporal settings, especially for the longer-term (3 and 4 weeks ahead) forecast horizon. Our case study also highlights the potential value of variant frequencies data for use in short-term forecasting to identify forthcoming surges driven by new variants. INTERPRETATION: Based on our findings, the proposed forecasting framework improves upon the available state-of-the-art forecasting tools currently used to support public health decision making with respect to COVID-19 risk. FUNDING: This work was funded the NSF Rapid Response Research (RAPID) grant Award ID 2108526 and the CDC Contract #75D30120C09570.


Subject(s)
COVID-19 , Deep Learning , Humans , United States , SARS-CoV-2 , Benchmarking , Forecasting
4.
IJID Reg ; 2022 Nov 20.
Article in English | MEDLINE | ID: covidwho-2239896

ABSTRACT

Background: The COVID-19 pandemic has caused societal disruption globally and South America has been hit harder than other lower-income regions. This study modeled effects of 6 weather variables on district-level SARS-CoV-2 reproduction numbers (R t ) in three contiguous countries of Tropical Andean South America (Colombia, Ecuador, and Peru), adjusting for environmental, policy, healthcare infrastructural and other factors. Methods: Daily time-series data on SARS-CoV-2 infections were sourced from health authorities of the three countries at the smallest available administrative level. R t values were calculated and merged by date and unit ID with variables from a Unified COVID-19 dataset and other publicly available sources for May - December 2020. Generalized additive models were fitted. Findings: Relative humidity and solar radiation were inversely associated with SARS-CoV-2 R t . Days with radiation above 1,000 KJ/m2 saw a 1.3%, and those with humidity above 50%, a 0.9% reduction in R t . Transmission was highest in densely populated districts, and lowest in districts with poor healthcare access and on days with least population mobility. Wind speed, temperature, region, aggregate government policy response and population age structure had little impact. The fully adjusted model explained 4.3% of R t variance. Interpretation: Dry atmospheric conditions of low humidity increase, and higher solar radiation decrease district-level SARS-CoV-2 reproduction numbers, effects that are comparable in magnitude to population factors like lockdown compliance. Weather monitoring could be incorporated into disease surveillance and early warning systems in conjunction with more established risk indicators and surveillance measures. Funding: NASA's Group on Earth Observations Work Programme (16-GEO16-0047).

5.
Lancet Infect Dis ; 21(5): e113, 2021 05.
Article in English | MEDLINE | ID: covidwho-1510467
6.
One Health ; 12: 100225, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1071821

ABSTRACT

Meteorological variables, such as the ambient temperature and humidity, play a well-established role in the seasonal transmission of respiratory viruses and influenza in temperate climates. Since the onset of the novel coronavirus disease 2019 (COVID-19) pandemic, a growing body of literature has attempted to characterize the sensitivity of COVID-19 to meteorological factors and thus understand how changes in the weather and seasonality may impede COVID-19 transmission. Here we select a subset of this literature, summarize the diversity in these studies' scopes and methodologies, and show the lack of consensus in their conclusions on the roles of temperature, humidity, and other meteorological factors on COVID-19 transmission dynamics. We discuss how several aspects of studies' methodologies may challenge direct comparisons across studies and inflate the importance of meteorological factors on COVID-19 transmission. We further comment on outstanding challenges for this area of research and how future studies might overcome them by carefully considering robust modeling approaches, adjusting for mediating and covariate effects, and choosing appropriate scales of analysis.

7.
Lancet Infect Dis ; 20(11): 1247-1254, 2020 11.
Article in English | MEDLINE | ID: covidwho-621939

ABSTRACT

BACKGROUND: Within 4 months of COVID-19 first being reported in the USA, it spread to every state and to more than 90% of all counties. During this period, the US COVID-19 response was highly decentralised, with stay-at-home directives issued by state and local officials, subject to varying levels of enforcement. The absence of a centralised policy and timeline combined with the complex dynamics of human mobility and the variable intensity of local outbreaks makes assessing the effect of large-scale social distancing on COVID-19 transmission in the USA a challenge. METHODS: We used daily mobility data derived from aggregated and anonymised cell (mobile) phone data, provided by Teralytics (Zürich, Switzerland) from Jan 1 to April 20, 2020, to capture real-time trends in movement patterns for each US county, and used these data to generate a social distancing metric. We used epidemiological data to compute the COVID-19 growth rate ratio for a given county on a given day. Using these metrics, we evaluated how social distancing, measured by the relative change in mobility, affected the rate of new infections in the 25 counties in the USA with the highest number of confirmed cases on April 16, 2020, by fitting a statistical model for each county. FINDINGS: Our analysis revealed that mobility patterns are strongly correlated with decreased COVID-19 case growth rates for the most affected counties in the USA, with Pearson correlation coefficients above 0·7 for 20 of the 25 counties evaluated. Additionally, the effect of changes in mobility patterns, which dropped by 35-63% relative to the normal conditions, on COVID-19 transmission are not likely to be perceptible for 9-12 days, and potentially up to 3 weeks, which is consistent with the incubation time of severe acute respiratory syndrome coronavirus 2 plus additional time for reporting. We also show evidence that behavioural changes were already underway in many US counties days to weeks before state-level or local-level stay-at-home policies were implemented, implying that individuals anticipated public health directives where social distancing was adopted, despite a mixed political message. INTERPRETATION: This study strongly supports a role of social distancing as an effective way to mitigate COVID-19 transmission in the USA. Until a COVID-19 vaccine is widely available, social distancing will remain one of the primary measures to combat disease spread, and these findings should serve to support more timely policy making around social distancing in the USA in the future. FUNDING: None.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Models, Statistical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Government Regulation , Humans , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Public Health , Quarantine/methods , SARS-CoV-2 , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL